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ABSTRACT

This report describes the results of an
experimental effort in which high-energy pulsed
electron beams were used to study dynamic fracture
induced by rapid in-depth heating. The work was,
performed under the metals portion of the PREDIX
program; the materials scudied were 6061-T6
aluminum, alpha, titanium and OFHC copper. Spalla-
tion thresholds for these materials are presented
in terms of the absorbed energy required to cause
a specified amount of damage as a function of
the tensile pulse duration. Differe:nces in the
loading paths resulting from plate impact on
the one hand and rapid in-depth heating on the
other hand are also described.

”*
Contract No. DASA 01-68-C-0138
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SECTION 1
: INTRODUCTION

ﬁ; Physics International Company's role in the metals portion

li of the PREDIX Program was to provide data on dynamic fracture j

fﬂ induced by rapid in-depth heating in support of the modeling :

ﬁg effort. Specifically, the objectives of the electron beam

%ﬁ experiments were to assess the effects of heating rate on the

!g spall strength as well as to obtain spall threshold data under

. boundary conditions basically different from those that apply ‘

B to plate impact. Data of this type are pertinent to in-depth j

g heating problems as well as to front surface spall induced ;

. by energy deposition,

A

?; Techniques were developed in the course of the program to

'3 characterize the response of metals to uniform energy deposition. "5
Concurrent improvements in electron beam technology and diag- ‘

ﬁj nostics now permit measurements of spall thresholds in a rela- 3

:E tively routine manner.

BAC]

%

The following sections describe the techniques used and

2 2

results obtained in examining the effects of in~-depth heating
in 6061-T6 aluminum, alpha titanium, and OFHC copper.
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SECTION 2
MATERIAL CHARACTERIZATION

R SOAS e
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T2 0 40
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No material characterization experiments per se were per-
formed. The metals studied in the PREDIX program were standard
materials insofar as they had been used for relatively long times
in structural and other applications. Consequently, processing
techniques are well established and the effects of processing
variables are well documented. Although spurious effects that
could be ascribed to batch-to-batch variations in material
properties were observed in some experiments, these effects

were not deemed sufficiently important to warrant a systematic

L}
bt -'
v 4

LI
L N N,

'

evaluation. Of particular concern were the material properties
required (1) to design the in-depth heating experiments, (2)

to calculate the energy absorbed by the target, and (3) to
analyze and reduce the experimental results to a useful format
for those contractors doing fracture modeling,

'.l ,s{l (l

These properties are the normal density, which in each case

’
e

is a well known quantity; to a lesser extent, these properties
include equation-of-state and material strength data for the

A,

appropriate range of pressures, temperatures, and heating rates,
This latter type of data, to the extent that it is available, was
obtained from the RADS Handbook (Reference 1) or from within
PREDIX.
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SECTION 3
EXPERIMENTAL TECHNIQUE

3.1 THE ELECTRON BEAM ACCELERATOR AND BEAM ENVIRONMENTS

The electron beams used in the bulk of this program* were
generated by the Model 1140 Pulserad, The pulsed electron beam
environments that can be produced by this accelerator are de-
tailed in Table 3.1. A schematic of the accelerator is shown in
Ficure 3.1.

A high voltage power supply charges a capacitor bank in
rarallel. The accelerator is fired hy switching to a series
configuration, which raises the voltage and decreases the dis-
charge time by closing a series of spark gaps. The voltage
surge is used to resonance charge a coaxial transmission line
(Blumlein) which delivers a high voltage negative pulse to
the cathode. The large electric field at the cathode, con-
sisting of a closely spaced, circular array of needles, results
in direct field emission of electrons towards the anode. The
electrons pass through the anode, which is a 0.002-inch titanium
foil, into a drift chamber where experiments are performed. The
partial pressure of air in the drift chamber is adjusted to

A limited number of pressure-energy coupling and rear surface
spall experiments in 6061-T6é aluminum were performed at <l MeV>
on the 73% Pulserad. These are described in Appendix D.
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TABLE 3.1

1140 PULSERAC ELECTRON BEAM ENVIRONMENTS

Fak Highest Dose Conditions Lowest Dose Conditions
Mean FPWHM | Normalized «
Electron Pulse Dose Uniformly Peak Uniformly Peak
Energy Duration (cal/g ) Fluencs Irradiated | Dose Fluence Irradiated | Dose
(MeV) (nsec! cal/cm (cal/cm?) | Area (cm?) |(cal/g) | (cal/em2) | Area (cm2) |(cal/q}
2 60 1.5 200 2 -3 300 190 10 15
1 60 1.0 300 2 -3 300 10 10 10
4,5 60 | 0.50 400 1 -2 ! 200 10 10 S

-
For intermediate dose conditions, the size of the unifcormly irradiated

Figure 3.1

area is approxirately 10 cm?,

Pylser control
and
dc charging
system

|

Marx surge
generator

B8lumlein
pulse
generator

Electron
accelergtor
tube

1

Dritt chamber

Block diagram of accelerator.
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produce a stable drifting beam. The beam is slightly divergent
as it emerges from the anode and its intensity falls off as the
inverse square of the distance from the anode. Several intensity
profiles, about the center of the beam, are shown in Figure 3.2
as a function of distance from the anode. Varying the anode to

target distance is the most common way of varying the fluence
incident on a taryet.

4 8510-A
. 8510-3
B 85155
@ 8515-8
e 8521
o~
£
> o0f
el
[ = 19 cm
It
b - 19.5 cm
=1
- , = 19.5 cm
c
¥ 50}
el
[
© >
)

n A A A J

0 0.5 1.0 1.5 2.0 2
pDistance across calorimeter, cm

o

Figure 3.2 Fluence profiles.

Of particular importance to material response studies is the
area over which the incident fluence is uniform (or nearly so).
As shown in Table 3.1, this area varies from one or more square
centimeters at the highest fluence to ten or more sgquare centi-
meters at the lowest fluences.
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The experiments described in this report were performed using
an electron spectrum having a meaax energy of 4.5 MeV. At this
energy, it was possible to subject the widest range of target
thicknesses to uniform deposition while remaining well within
the peak dose capabilities of the accelerator. Lower energy
electron spectra and correspondingly higher peak dose walues
that still result in uniform heating (but over a narrower range
of target thicknesses) can be obtained using smaller anode-
cathode spacings.

3.2 ELECTRON BEAM DIACGNOSTICS AND CALORIMETRY

This section describes the experimental techniques used to
measure electron deposition profiles and fluences on the Model
1140 Pulserad for the experiments here under consideration.
Additional computational steps required to arrive at a dose in
the target are also presented.

In uniform heating experiments the target thickness is less
than the electron range and a significant portion of the incident
fluence is transmitted through the sample. This transmitted
fluence is measured using a segmented graphite calorimeter array,
of the type shown on Figure 3.3, located immediately behind the
sample. The length of the individual graphite blocks in the
array is that required to totally absorb the transmitted beam.
The areal dimensions of the blocks are chosen according to the
resolution that is required. Typical dimensions used in this

work were 1/2 cm x 1/2 cm x 1/2 inch.
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Iron-constantan thermocouples are attached to the rear of
the graphite blocks with aluminum screws. The temperature rise
of the blocks due to deposition is recorded with a high-speed,
scanning digital voltmeter. A desk computer is then used to
reduce the voltage output to fluences. These calorimeters are -
believed to be accurate to approximately 5 percent. Figure 3.2

shows several fluence profiles measured with these calorimeters.

Time-integrated energy deposition profiles are measured ex-
perimentally using a calorimeter composed of a stack of thin
metal foils. One such depth-dose calorimeter is shown in
Figure 3.4. The plates are 0.020-inch-thick aluminum and are
insulated from each other by 0.060-inch spacers. This spacing
minimizes the number of electrons laterally scattered out of
the stack., There are 22 plates which are sufficient to stop all
the electrons in a 4.5-MeV beam. A collimator defines the
incoming beam of electrons so that a circular area about the
center of each foil is heated. Thermocouples at the edge of
each foil measure the temperature rise which, from the known
thermodynamic properties of the foil material, is converted to
dose normalized to unit incident fluence.

The results of several depth dose shots using an aluminum
foil calorimeter, for nominally identical accelerator conditions,

are shown superimposed on Figure 3.5. Accuracy appears to be
better than 5 percent.

The accelerator voltage and current traces, respectively, .
determine the energy spectrum and intensity of the beam. Depc-
sition profiles can also be calculated using electron transport
codes and the output of the accelerator voltage and current

monitors. The absolute calibration of these monitors is a

10
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Figure 3.5 Maximum variation in experimental depth dose

measurement for nominally identical machine
parameters.
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difficult task that has not yet been completed. Although this is
a drawback, it is not a serious one. Since the electron energy

atala. lole

. is linearly r "-+*ed to the accelerating voltage, one need only

5 find the correct scaling constant. This is accomplished by using

ﬁ an iterative procedure wherein a scaling factor is assumed and

ﬁ a deposition profile corresponding to this electron spectrum is

D computed. When the agreement between the experimental and com- l
g puted deposition profiles is satisfactory, one assumes that the '

correct scaling factor or electron spectrum has been determined. 3
An absolute calibration of the current monitor is not required. '
In computing a normalized deposition profile, only the relative ;
intensities over the energy spectrum must be known.
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The fact that deposition profiles can be calculated from the
acceierator diagnostics is important since it is generally
impractical to directly measure time integrated dose in the i
target. In addition, time-dependent measurements of deposition

are clearly beyond the capabilities of current calorimetric .
techniques.
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The degree of correlation that can be obtained between
experimental depth dose shots and Monte Carlo code (Reference 2)
calculations using the accelerator current and voltage outputs
is illustrated in Figures 3.6 and 3.7 for aluminum and nickel
calorimeters, respectively. The fact that the time-integrated
profiles are in good agreement is taken to mean that the com-
puted time dependence is also essentially correct.
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The deposition profiles mcasured by the previously described

'»

depth dosimeters are those for semi-infinite homogeneous medium.
gg In the experimental configuration, however, a finite thickness
v sample is placed in front of the graphite calorimeter array and
f& this influences the deposition profile. 1In particular, graphite

has a lower atomic number than the materials studied here which |
results in fewer electrons being back-scattered into the target. |
The corresponding effects on the deposition profile are illustrated
gualitatively in Figure 3.8.
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The preceding remarks iead directly to the procedure used
to determine the dose absorbed by the target. Deposition pro-
files in aluminum depth dosimeters are measured by spanning the
range of accelerator outputs encountered in the spall shots.
Electron energy spectra for these shots are determined as pre-

S% viously described (the spectrum varies somewhat from shot to

225 I PR
AR
PN AP

v

-
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A shot as illustrated in Figure 3.9). Once the electron spectrum
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Figure 3.6 Comparison of measured and claculated depositien
profiles in aluminum for <4.5 MeV> electrons.
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Figure 3.7 Comparison between measured and calculated deposition
profiles in nickel for <4.5 MeV> electrons.
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Maximum observed spectral variation from shot to
shot: aluminum depth dose measurements.
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is known, the Monte Carlo .ode (Reference 2) is used to calculate
the depositicn profile for the actual target configuration (i.e.,
spall specimen(s) backed with graphite).

3.3 PROCEDURE FOR DETERMINING SPALL THRESHOLDS

The electron beam environments are selected on the basis of
maximum sample thickness that is to be uniformly heated and an
estimate of the peak dose levels that will be required to bracket
the spall thresholds. Thick targets (or high-2Z2 materials) require

relatively high energy electrons (3 to 5 MeV) for uniform depo-

vy A

-

sition. In targets so thin that there is appreciable pressure

v 4

relief during deposition, considerably lower energy electrons
may be required to attain the dose values for spall. 1In the
present program it was found that <4.5 MeV> electron beams could

be used to explore spall phenomena over the full range of
interest.
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The experimental configuration for in-depth shock heating
:E experiments is shown in Figure 3.10. The targets are slabs of
ii uniform thickness and have approximately 1.5 inches x 1.5 inches
X lateral dimensions (these dimensions are not critical). Depend-
{5 ing on the thickness, one or more stacked slabs can be irradiated
ﬁg simultaneously. The natural fall-off in the deposition profile

can thus be used to provide more than one dose level per exposure.
The thickness of each slab and the number of slabs in the stack

i

;:} must, of course, be chosen so that each slab is uniformly heated
o

;}: (or nearly so).

e

"

S~ After exposure the specimens are cut along a line through
'ﬁi the peak of the fluence profile, polished, and examined metallo-
:;B graphically for damage. Incipient spall is defined as all damage
2

o
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e
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Total energy deposition
irradiated
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Figure 3.10 Experimental configuration for midplane spall.

consisting of cracks whose individual length is less than 1 mm,
The onset of incipient spallation, as evidenced by the first
appearance of cracks visible at 50X, is defined as the damage-no
damage threshold. It is further considered that complete spall

has occurred whenever the length of individual cracks is equal

to or greater than 1 mm. i

The crossover point is the complete spall threshold. It is
observed that crack coalescence becomes increasingly important
for crack lengths greater than 1 mm and that, in addition, the
material is so severely damaged at this point that strength in
tension, perpendicular to the spall plane, is very small.
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It is recognized that other reasonable definitions of spall

Q% threshold exist. The ones that have been adopted, however, give i
u-\ ‘-' .

.E. the best correlation between absorbed dose and observed damage

fj for in-depth heating experiments. The damage-no damage threshold,

2§

in particular, is physically realistic and most widely applicable
because it is independent of details such as crack orientation
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and concentration.
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Finally, on subsequent exposures, the levels are varied until

S
s “r

the spall thresholds have been bracketed to the desired accuracy.
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SECTION 4
EXPERIMENTAL RESULTS

The results of midplane spall experiments on as-received
6061-T6 aluminum, alpha titanium, and OFHC copper (bar and
sheet stock) are presented in this section. For these experi-
ments the targets were initially at room temperature. Also
reported are (1) more limited sets of experiments on 6061-T6
aluminum pre-heated (long scak times) to various temperatures
immecdiately before irradiation and (2) experiments on 6061-T6

aluminum targets subjected to a prior ccmpressive shock.

The microscopic appearance of midplar : spall is illustrated
in Figures 4.1 and 4.2. As previously noted, damage is correla-
ted with the peak absorbed dose and the results are then plotted
as a function of target thickness as shown for 6061~T6é aluminum
in Figures 4.3 and 4.4. The spall thresholds are sharply
defined.

Acoustically thin targets are those in which there is relief
of pressure during the deposition time (approximately 60 nsec
FWHM or 100 nsec total). Higher dose levels are accordingly
required to develop t™e tensile stresses or strains to cause
fracture. It is alsc to be noted that temperature varies along

the threshold dose curves.

There is some ambiguity in the definition of dose in a
sample tnat is so thick, or is so positioned in the stack that
the deposition profile has some fall-off. This situation, to-

gether with a definition of peak average dose, is shown in
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Figure 4.3 Incipient spall in 6061-T6 aluminum.
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Figure 4.5. The results that have been obtained indicate that

even an appreciable fall-off dose does not lead to scatter or

.
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inconsistencies in the spall thresholds. Computations that
support this conclusion have been performed. For example, Fig-
ure 4.6 shows the peak tensile stress profiles corresponding

to the two deposition profiles on Figure 4.5. Although dif-

ferences exist they are not dramatic.

- Table 4.1 lists the threshold values obtained for 6061-T6
ll aluminum. Some of these have been interpolated from the shots

- nearest to the spall threshold. For material response calcula-
tions, it is suggested that deposition profiles and fluences for
‘. the shots nearest to the spall threshold be used. These shots
iﬁ are listed in Table 4.1; accompanying deposition profiles and
fluences are contained in Appendix A. At the higher fluence
levels the radial fall-off in fluence over the irradiated area
of the sample can be appreciable. However, the fall-off about

the peak of the fluence distribution over distances comparable

-
P

to the target thickness is always very small. The peak £fluence,

» ."‘.'. o

I"
.

there, is the appropriate quantity for 1-D calculations.
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TABLFE 4.1
EFFECTS OF UNIFORM ENERGY DEPOSITION IN 6061-T6 ALUMINUM
INITIALLY AT ROOM TEMPERATURE

L
a3 a0 8 4 ¢
¢ v fe Mo
LA X

DA A

5 Experimental

‘-‘V Shot Nearest

o To Damage- Complete

X Sample Damage-No Damage Complete Spall No Damage Spall

oy Thickness | Threshold Dose | Threshold Dose | Threshold Threshold

3 (inch) (cal/q) (cal/g)

Y

® 0.012 66.0 72.0 59166 5916-4

o 0.020 36.5 51.0 5853-5 5855~4
- 0.032 35.0 43.0 5858-3 5905-2

o 0.063 (Batch 1) 25.5 32.0 5911-1 5860-1

o 0.063 (Batch2) 41.0 51.0 8522-2 8523-1

3 0.125 32.0 38.0 5698-1 5693-1
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Figure 4.8 Spall in alpha titanium.
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The results for alpha titanium are shown in Ficure 4.7 and
4.8. Toable 4.2 summarizes the results. Energy deposition para-

meters appear in Appendix B. As can be expected, the qualitative i

trends in the threshold dose versus target thickness relations

ii are the same as in aluminum, Calculations involving threshold
e dose levels above 120 cal/g must consider the effects of the
?& « (hcp)—»B(bcc) transformation that begins at 870 C. There is

X evidence that this transformation can occur on a microsecond

time scale (Reference 3).

TABLE 4.2

EFFECTS OF UNIFORM ENERGY DEPOSITION IN
ALPHA TITANIUM INITIALLY AT ROOM

e TEMPERATUKE

o Experimental Shot

Nearest to:

E - Complete :
3 Sample Damage~No Damage Complete Spall Damage-No Damage Spall |
b Thickness Threshold Dose Threshold Dose Threshold Threshold !
N¢)

s {(inch) (cal/q) (cal/q)

A 0.009 192.5 192.5 £919-5 5919-4

n 0.035 99.5 123.0 5827-1 5830-1

0.125 70.5 90.5 5821-1 5925-1

o

oy !
Y i

\

3
a

[
i

The last set of results to be presented are those on OFHC
copper. Both sheet and bar stock were examined. The results
are shown in Figures 4,9 through 4.11 and are further summarized
in Table 4.3. Energy deposition parameters are presented in
Appendix C. These two forms of copper have rather different

spall thresholds. Metallographic observations indicate that in
sheet stock material, where the direction of grain alignment is

parallel to the spall plane, fracture was predominantly inter-

B L SRS

granular. In the bar stock material the grains were aligned
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perpendicular to the spall plane and fracture tended to be
transgranular. This is illustrated in Figure 4.12. Differences
in ductility with preferred orientation may account for the
observed threshold dose behavior.

80 ¢

60}

404

Incipienc spall
domain

Peak dose, cal/g

20

o

L0082 0.0355 0.010 c.cs¢C 0.100

Target thickness, inches

Figure 4.11 Midplane spall in OFHC copper.

As spall theshold data were being generated, comparisons
were being made between the computed spall stresses for gas gun
and electroﬂ'beam experiments. These comparisons indicated
that fracture induvced by in-depth heating was occurring at
lower stress levels than in plate impact. This is illustrated .
in Figure 4.13 which compares the computed peak tensile stress
at the spall thresholds for the various experiments in 6061-T6
aluminum. In addition, there is a marked lack of time dependence
in the electron beam experiments. These observations apply as
well to the other materials studied., It was thought initially
that perhaps the material was weaker in the electron beam
because spall was occurring at an elevated temperature. The
possibility was also raised that the precompressive stress or
strain that the spall plane experiences in a plate impact experi-

ment could be strengthening the material.
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of fracture in bar and sheet stock OFHC cop-
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The possible effects of temperature and precompression were

examined in two brief sets of experiments. In the first of

N e

o’ ate o

these experiments, 0.063-inch 6061-T6 aluminum targets were

- 4
I.'

preheated to temperatures up to 500 F immediately before

)

irradiation. An oven located in tne electron beam chamber was

-~
-

L

used. Heating times were on the order of 16 minutes and the

spall thresholds were determined in the usual manner. The

oy
-

results are shown in Figure 4.14. A typical preheat cycle is

-

»
X .

shown on Figure 4.15. It appears that temperature has only a
modest effect on the threshold dose for spall. Note that the
heating due to irradiation further increases the temperature

L _Je o

(at approximately 10 F/cal/g) above the soak temperatures.
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Figure 4.14

Temperature, millivolts

Figure 4,15
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Long heating time effects on midplane spall in
0.063-inch 6061-T6 aluminum,
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Typical preheating cycle, shot no. 7099, 0.063-inch
6061-T6 aluminum iron-constantan thermocouple,
reference junction 1.28 MV,
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In the second set of experiments, 0.062-inch 6061-T6 !

specimens were preshocked in the Effects Technology, Inc. explod-

ing foil facility using 0.0l4-inch Mylar fliers and impact
velocities of approximately 0.067 cm/usec. A peak compressive
stress of about 22 kbar was thereby introduced in the aluminum
samples which were, in addition, protected by momentum traps.
The midplane spall thresholds were subsequently determined in
the usual manner. The results are summarized in Figure 4.16.
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As-received (batch 2)
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%S Figure 4.16 Precompression effects on midplane spall in
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0.053-inch 6061-T6 aluminum,

The complete spall threshold dose and, to a lesser extent,
the incipient spall threshold dose are both raised by precom-
pression. These results refer to only one compressive pulse
amplitude and duration. Greater or lesser strengthening may
result from different precompressive loads. Another observa-

tion is that batch-to-batch variations in material properties
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can have an effect on the threshold dose for spall. The
magnitude of the effect is illustrated in Figure 4.16 for the
0.063-inch material. ©Only this thickness »f material showed
pathological behavior from batch-to-batch.

In addition to the passive shots, a few uniform heating
experiments were performed in which the velocity of the free
surface was observed with a laser interferometer. The objective
of this series of experiments was to provide an independent
determination of the stress required to produce spall. Simul-
taneous measurements of displacement (Reference 4) and velocity

({Reference 5) were made.

A difficulty frequently encountered in interpretation of the
interferometer records is the detection of the point at which
the velocity reverses direction, If this occurs near a maximum
or minimum of the fringe intensity, there is often no cicar
indication of the reversal. The reversals in the displacement
record are easier to detect since the individual fringes are
distinguishable only when the velocity is less than about 35
m/sec. Thus, by making simultaneous measurements, the times at
with the velocity is zero can be obtained from the displacement
record. This information then provides a check on the peak
velocity since the number of fringes increasing the velocity
from zero to the peak must equal the number of fringes decreasing
the velocity from the peak to zero.

The interferometer measurements were made on l/8-incih-thick
*
6061-T6 aluminum. However, it was not the PREDIX material
since the latter was no longer available at the time these

experiments were performed. The experimental configuration is

*

In order to minimize uncertainties, all experimenters within
PREDIX were supplied with controlled and identical stocks of
material.
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shown in Figure 4.17. It was necessary to position the photo-
multiplier tube a: a substantial distance from the target and
behind considerable shielding to prevent bremsstrahlung radiation
from perturbing the output.

_—— e ———— Pilter
Smpla lst-surface

|
| -1
| Zlectron beam mirrors
h
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| Focusing | <€alorimater
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A /4 plate l

Polarizing beam 'SCreen
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splitters
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Ef\;g:::‘:;:‘ ¢ intormation

Figure 4.17 Tandem mode interferometer system offering simul-
taneous displacement, velocity, and acceleration
information.

A representative oscilloscope record is shown in Figure 4.18.
The velocity time records from several shots are shown in Fig-
ure 4.19. Extensive spall occurred on shots number 13080 and
13090. The effect of the spall upon the free surface velocity
history is readily seen in Figure 4.19; successive reflections
of the pulse occur at the spall plane, reducing the transit time
to half the value observed for undameged material. Although
complete separation did not occur, the amount of damage on these
shots exceeded the level previously defined as the complete
spall threshold. A photomicrograph of the sample for shot
number 13030 is showr in Figure 4.20.
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Figure 4.18 Velocity interferometer record obtained on shot
no. 13091.
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Free surface velocity records of 6061-T6 aluminum

sample subjected to nearly uniform sudden heating.
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Figure 4.20 Microscopic damage observed in 6061-T6 aluminum
for shot no. 13080 (magnified 50X).

Some difficulty was encountered in obtaining an accurate
measurement of fluence, since a calorimeter could not be placed
directly behind the sample at the point where the velocity was
observed. Calorimeters were used to measure the transmitted
beam intensity surrounding the observation point; however,
several factors complicate the use of these measurements to
deduce the fluence incident on the sample, 1In particular, the
absence of the center calorimeter block in the array perturbs
the readings of the adjacent blocks. This occurs because
electrons scattered laterally into the opening are not replaced
by electrons that would otherwise ke scattered from the center
block into the surrounding blocks. Additional uncertainties
arise from estimating the peak intensity from peripheral read-

ings. Finally, in these particular experiments, the recording
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time of the scanning digital voltmeter that reads and prints the
thermocouple readings was not long enough to allow observation of
the peak temperature. Consequently, estimates of the peak dose
levels in these experiments based upon the calorimetric measure-

ments were regarded only as lower bounds.

The peak dose, Em, obtained on each shot can be estimated

from the peak observed f—ee surface velocity, u from the

fs’
relations :

where p is the density and I is the Gruneisen coefficient and

0 0

_ _av _ ap

Ugs = / ( ap)s ap = oc (P, €]
P

(o}

where c 1is the sound velocity. A knowledge of the energy
deposition profile then serves to establish the fluence.

A cross check of the deposition profile is provided by
comparing the experimental data with the computed response using
the POD* code. Such comparisons are shown for shots number
13085, 13091, and 13030 in Figures 4.21 to 4.23, respectively.
In general, close agreement is obtained, except subsequent to
the occurrence of the spall in shot number 13080. In this
computation, a minimum pressure criterion was used and here the
lack of agreement after spall is not an issue of concern. Equa-
tion-of-state parameters used in the computation for aluminum

were obtained from Reference 6 and Appendix D of this report.

; .
Physics In*ernational's finite difference material response code.
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Figure 4.21 Comparison of measured and predicted response
of 6061-T6 aluminum, shot no. 13085.
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The dose levels predicted by the free surface velocities

are approximately 1.7 times greater than those deduced from the

-
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e
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calorimetry. This is somewhat disturbing, especially since a
discrepancy of this magnitude would largely eliminate the

b3 observed differences in spall strength between uniform heating
Eq and plate impact experiments.

L

.i\-,

i; However, a careful re-examination of the calorimetric

Eﬁ techniques used in obtaining the uniform heating spall threshold
{% data tends to discount the possibility of an error of such a

ﬁj large magnitude. These considerations are detailed in Section 5.
%

B

N Sections of the target materials for shots number 13080

5

Rf and 13090 revealed damage exceeding the extert chat defines the
;}l complete spall threshold (i.e., continuous cracks of length
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Figure 4.22 Comparison of measured and predicted response of
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Figure 4.23 Comparison of measured and predicted response of

6061~-T6 aluminum, shot no. 13080,
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greater than one millimeter), which, based on the earlier data,
would be expected fcr the estimated peak dose of 61 cal/g.

Sample number 13091 exhibited no damage. From the free surface
velocity, the peak dose is estimated as 39 cal/g, which is

above the incipient spall threshold obtained on the PREDIX base-
line material (cf. ’igure 4.3). However, the material used in
the interferometer experiments was not PREDIX stock, and the
higher threshold is not inconsistent with observed batch-to-batch
variations in the spall strength 6061-T6é aluminum reported here
(Figure 4.13) and by Kreer (Reference 7).

Some additional independent tests are currently being con-
ducted to establish the uncertainties that may be associated
with the calorimetric data.
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SECTION 5
: DISCUSSION

Computations of stresses required to produce incipient
damage show that spall thresholds obtained using pulsed electron
beams are substantially lower than those obtained in plate impact
experiments (Reference 8). This, of course, immediately raises
the question of the origin of the observed differences. Some

possible causes are considered in the following discus ion.

The possibility of a systematic error in the calorimetric
measurements has been carefully considered. Unfortunately, in-
situ calibration is difficult, especially for the intense <4 5 ;
MeV> pulsed electron beams used in this work. A test was per-

formed to determine +he dose for the onset of melting in a tin

slab, using essentially the same configuration as was employed in
the spall experiments. The threshold dose to produce melting
computed from the energy deposition profile and transmission
calorimetry was within 10 percent of the handbook melt enthalov.
In other experiments, thermocouples on thin aluminum samples in
the spall configuation gave results that agreed well with the
doce levels computed from the transmitted fluences (Reference 9).

(4

On the other hand, two points must be considered: (1) the

r\.»«.-.‘f.‘ -
AR N P IS

lack of an absolute calibration of the voltage monitor and (2) ;

-

the magnitude of the discrepancy between the computed dose levels
and the measured free surface velocities in the laser interferom-

a
»

o

o ed

al s

eter experiments. These factors suggest that the question is not
completely resclved, despite the stated shortcomings of the

calorimetry used in the laser interferometer experiments.,
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. Further insight into the bounds of the calorimeter's

Lo accuracy can be obtained by considering the results obtained in

%}: the electron beam experiments on preheated aluminum.

L)

= The melting range of 6061-T6 aluminum (Reference 1) lies .
1Q between 580 and 650 C (1080 to 1200 F)., For samples preheated ]
?iﬂ to 400 F, an additional 68 cal/g of absurbed dose would be

:ﬁ] required to produce incipient melt., Referring to Figure 4.14,

data were obtained on material preheated to 400 F for measured

dose levels up to the order of 50 cal/g. Hence, assuming
incipient melt could be observed in a photomicrograph of pre-
heated material that received a peak dose of 70 cal/g (final
temperature of 1100 F), the peak measured value of 50 cal/g

could not be in error by as much as 20 cal/g, equivalent to a
factor of 40 percent.

The effects of precompression represent another potential
explanation for the different spall thresholds obtained in the

EEE two configurations. Shock precompression is present in plate

bl impact, but not in pulsed electron beam experiments using uniform
Ly heating or in cases where front surface spall is considered.

s The results of work performed to date, while not definitive,

Lo have, however, tended to eliminate precompression as the source
a;’::' of the difference.

iﬁ In the study of precompression effects, a rear surface ]
E; spall threshold was obtained for stress pulses produced by

:}? deposition of <1 MeV> electrons in a 6061-T6é aluminum target

§i§ that was thicker than the range of the electrons (Appendix D).

g?, In such a case, if there is no front surface spall, a tensile

8§ stress pulse follows the compressive stress pulse and super-

;i imposes with che reflected compressive pulse near the rear
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surface. Thus, a given peak tension is produced in the material
with roughly half the precompression as that required to produce
the same peak tension using plate impact technigques. The in-
cipient spall threshold thus obtained agreed with the plate
impact data to witiin the experimental uncertainties.

ETI has reported (Reference 10) exploding foil data in
which 6061=-T6 aluminum targets were backed with a lower impedance
material (magnesium and Lucite). In such a case, the precom-
pression to achieve a given tensile stress is increased above
that required when the rear surface of the aluminum is free.
They concluded that an increase in precomprs2ssion above that

obtained in the usual plate impact experiments does not greatly
change the stress-time conditions at the spall threshold.

The effects of shock precompression were further investigated
by irradiating samples that had been subjected to compressive
lpading at ETI. The results of these experiments, described in
Section 4, imply that the effects of precompression, if present,
are too small to account for the difference between electron
beam and gas gun data. However, several factors could account
for the failure to demonstrate an appreciable difference from
the experiments on virgin material. First, the length of time
between the shock compression of the samples and their exposure
in the pulsed electron beam was on the order of a day or longer.
Curing this time, recovery processes could relieve localized
residual stress concentrations. In addition, Jones (Reference

11) has shown that lateral stress relief after shock precom-

pression has a considerable effect upon the strain history of
the material. Hence, at the time that spall occurs, precomoressed
samples that have undergone lateral stress relief are not truly

representative of material subjected only to plate impact or the
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pulsed electron beam where the entire response consists of
:§ uniaxial strain up to spall. This detailed strain-loading
< ' . . . .
o™ history may be quite important if the differences in the two
»
>

configurations are associated with the Bauschinger effect.

" Other phenomena may account for observed differences in
o the spall thresholds; differences exist in the detailed

loading history of the material at the spall plane in the two
configurations.

The difference in the stress histories obtained
in electron beam and plate experiments are illustrated in
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Figure 5.1, where the axial stress (the component of stress in
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plane in plate impact and electron beam experiments,

o
g
5 2

1%

". -—

(1:— X W

o

.S
-
N

e

c - ','EPQ.‘.'-‘;-‘..""




. - AWHE = ~ MEXY™ TR U LV LIRoe
W AP LSBT LAY S TV S SV W S WA W R, W LA R AT BT W AR L R SR A L OO SETRfARARMAEIBARRS AW TN RKE XVEEY
L - . R ETT SN .

A
LAY

“.”.
LN

[l 4
.

o Mt

X
l;' "

S TN TATN Y W
T T e D
SRR S 4

2

the direction ©of the wave propagation) 1s shown as a function
of the transverse stress. 1In plate impact, the initial loading
occurs elastically with dcT = v/1l=-v doA (where v is Poisson's
ratio) along A-A', until the yield surface is reached at A'.
Additional loading produces yielding and each subseguent incre-
ment in axial stress is matched by an equal increment of trans-
verse stress. After the plastic compression A'-B', the material
remains in the compressed state B' until the trailing rarefac-
tion and reflection tension leaa first to elastic unloading
B'-C', and then plastic unloading to the tensile state D

where fracture nay or may not occur.

In the electron beam case, on the other hand, as energy is
deposited pressure is generated and the initial loading is
hydrostatic from A to B; this occurs at nearly constant volume,
so there is no compression or shear. The material remains in
this state, B, until the arrival of rarefaction waves from the
free surfaces; then it unloads, first elastically along B to C
and then plastically along C to D to the tensile state D.

This illustrates two significant differences between plate
impact and electron beam loadings. First, less plastic work is
produced in the electron beam loading; second, the direction of
shear stress reverses for plate impact, but not in the case of
the electron beam. Consequently, there can be no Bauschinger
effect in the latter case.

It can also be seen from Figure 5.1 that the stress state
in tension for the two cases is the same, provided work harden-
ing 1s not significzant.
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Tuler (Reference 9) compared the computed strains at the
srall threshold for the plate impact and electron beam data and
found a rather dramatic correlation. On this basis, he has
suggested that a critical strain criterion, rather than a

critical stress criterion, may be appropriate.

The sequence of stress states during tensile loading up
to failure are, as noted above, the same for the two types of
experiments. Hence, at the time that axial stress goes into
tension (aside from the total amount ¢f plastic work), the
material states for the same tensile stress value for
plate impact and electron beam experiments differ
primarily in axial strain, density, and temperature.

In plate impact experiments for 6061-T6 aluminum, targets

were heated tc initial temperatures comparable to those produced
by the electron energy dzspositions; however, too small a drop

in the spall threshold was observed to ascribe the differences
in stress to temperature alone. Consequently, the strain

difference (for a given tensile stress) appears to provide a
likely explantation,

Close examination of the critical strain criterion, however,
raises some funadamental questicns concerning its physical basis.
The data for 6061-T6 aluminum presented hy Tuler are shown
replotted in Figure 5.2, but in the “orm of axial stress versus
density (normalized to its rcom temperature, atmospheric pres-
sure value) at the plane of peak tension. Also shown are
loading-unloading paths for material preheated to 170 C and
subjected to plate impact loading at several impact velocities.
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Figure 5.2 Dynamic loading paths for 6061-T6 aluminum in
pulsed electron beam and plate impact experiments.
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The sequence of states for the electron beam irradiated material
is denoted by A-B (hydrostatic loading), B-C (elastic unloading),
and C-D (plastic unloading). For the room temperature plate
impact case, the sequence is A-A' (elastic loading), A'-B'
(plastic loading), B'-C' felastic unloading), and C'-D' (plastic
unloading). The sequence of states for the preheated material
subjected to plate impact is A - A" - B" = (C" - D".

-
o
‘wt
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i

By selection of the proper preheating temperature, the
plastic unloading path (C"-D) for the plate impact can be made
to coincide with the plastic unloading path (C~D) for the pulsed
electron beam irradiated material. Hence, the sequence of axial
stress versus density states leading up to incipient spall
formation are the same. Moreover, the stress deviators (i.e.,

the differences between the transverse and axial stresses) are
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!. also the same at tensile stress levels where plastic unloading
@% is occurring for both types of experiments.

s

Finally, the strain deviators are also the same. This can
be shown as follows.

The strain deviators are defined as
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where
= 1/3 (5A+ 2 ST)

%g 8, = 2/3 €y = 2/3 (%; -1)

7 v v v oarw
>

6p = =1,/3 €5 = - 1/3 (%; -1)

Consequently, the strain deviators are directly related to the
density. Thus, if axial stress versus density states are matched
during the plastic unloading prior to spall, the material states
(i.e., all the stress and strain components) are equivalent near

the failure point for both electron beam and heated plate impact
experiments.

Another way to view the critical strain hypothesis is to
consider the appropriate reference state. For the electron beam
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case, the reference state should not be the material at its
original density, that is, the state prior to irradiation.
Rather, the strain in the irradiated material should be refer-
enced to its stress free state. This is shown by considering
that the material state obtained by constant volume heating
could also be obtained by heating at zero pressure (free expan-
sion), which does not induce any strain, and then by compressing
the material hydrostatically back to its original volume. This
imposes a net elastic strain, and is equivalent to the state
following sudden energy deposition. When this elastic strain is
considered, there is no longer a correlation between the maximum

strains obtained for the plate impact and pulsed electron beam
experiments.

Lookxing further for potential explanations of the observed
differences, one factor is the time at temperature. The pre-
heated plate impact samples are at or near the final temperature
for a long time (several minutes) compared to the electron beam
samples which undergo tensile loading after times at temperature
on the order of a microsecond or less. Data (Reference 9) on the
temperature induced degradation of the yield strength of 6061-T6
aluminum for short times at temperature following submicrosecond
heating (~200 usec to 10 msec) indicate that the extent of
strength degradation is appreciably less than for longer times
at temperature. These data are shown in Figure 5.3; they indi-
cate that the yield strength in the high temperature plate impact
shots (and the pre-heated taryet electron beam shots) were
significantly lower. This lower yield strength may imply an
increase in ductility. As a result, the plastic shear strains
may be less likely to produce void nucleation sites, and once
voids are formed, the ductility will require greater stresses to
propagate cracks. This is attributed to extensive plastic
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Figure 5.3 Thermal degradation of the yield strength for 6061-T6
aluninum following instantaneous heating.

A\

deformation which blunts the tips of moving cracks, thereby
increasing the stress required for further crack growth. Thus,
the effect of decreases in yield strength at the elevated temp-
eratures upon the spall threshold may be compensated by the
concommitant increase in ductility. In the case of the electron
beam irradiations (without long soak time preheating), the
material with higher yield stress may tend to behave in a less
ductile fashion. Admittedly, a correlation between yield
strength and spall strength is not obvious, nevertheless, the

EPE T
“5 050 ls

R SIR .
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5; trends shown by both the pre-heated flier plate and electron
$§ beam data are consistent with the above explanation. J
A

'
L
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. Plastic shear strains have been shown to create void

L)

s : ; : ; . .

:R nucleation sites in tests in which failure occurred at lower
L

g8

tensile stresses if preceded by torsional plastic shear (Refer-
ence 12). It should be noted that by reversing the plastic

.
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shear strain before applying tension restored some of the tensile
strength. Thus, the reversal of the shear strains that occurs

in the plate impact experiments may also be related to its
apparent greater tensile strength.

One additional possible explanation is that differences
result from the radiation damage induced by the high energy
electrons. A reasonable value for the fractional number of atom
displacements, F, can be obtained from the relationship (Refer-
ence 13)

2
F =n (2.5x10°2°) 32 il—'f-;){(y-l)-ez 1n y+0.023 Z e[z tyl/2_1)-1n y]}
_ L B _

4 mo 2 E

E
) = (1 + -——-15)
M €o 2m°c

where y = (

E = the electron energy

™
n

the threshold displacement energy (~ 25 V)
m_ = the electron rest mass

M = the target atomic mass

N
1l

the target atomic number

c = the velocity of light

g = g, the ratio of electron velocity to ¢

n = the number of electrons incident/cm2

To produce a dose of 30 cal/y, a flux of 4 x lO14 electrons/
cm2 of 4 MeV electrons is required. In aluminun this produces
roughly one primary atomic displacement in every 109 atoms. This
is an order of magnitude lower than can be detected by changes
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in mechanical properties (Reference 14). The energy of the

j; electrons is large compared to the threshold energy to produce
I atomi.c displacements (~ 0.5 MeV), so multiple atom displacements
ﬁﬁ are probably likely. However, the low density of primary dis-

nlacements suggests that the defects produced by the beam are

"
L.

” not likely to materially affect mechanical properties.

N

iﬂ In addition, radiation-damage data on aluminum alloys
(Reference 13) obtained with neutrons (~ 102°/cm2) had the effect

N of increasing both yield and ultimate tensile strengths.
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SECTION 6
CONCLUSIONS

Techniques have been developed to determine thresholds for
spall produced by sudden, uniform volume heating of materials.
The threshold dose values to produce incipient and complete spall
have been measured as a function of sample thickness (i.e., pulse
duration) for 6061-T6 aluminum, alpha titanium, and OFHC copper.

The data predict a lower peak tensile stress to produce
damage than is computed from data obtained in plate-impact
experiments for equivalent tensile pulse durations. This ob-
served difference is greater than can be attributed to differ-
ences in definition of spall damage levels, scatter in material
properties, heating rate, temperature and time at temperature
effects, and estimated experimental uncertainties.

Several potential explanations for this difference have
been suggested. However, no single explanation is clearly
satisfactory either because of insufficient experimental veriti-
cation or the lack of a sound physical basis.

At present, the most likely explanation appears to be re-
lated to either (1) the Bauschinger effect or an integral over
tne plastic strain, or (2) a systematic discrepancy in the

calorimetric measurements used in the electron beam experiments.
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A definitive resolution of the observed differences in
dynamic fracture thresholds induced by plate impact and rapid
heating must wait a chorough examination of calorimetric tech-

niques and further actively instrumented, uniform heating experi-
ments.
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APPENDIX A

DEPOSITION PROFILES AND INCIDENT FLUENCES FOR
THE SHOTS NEAREST TO THE SPALL THRESHOLDS IN
6061-T6 ALUMINUM INITIALLY AT ROOM TEMPERATURE
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DEPOSITION PROFILES AND INCIDENT FLUENCES FOR
THE SHOTS NEAREST TO THE SPALL THRESHOLDS IN
ALPHA TITANIUM INIiTIALLY AT ROOM TEMPERATURE

S Ll SRR . . ohhAnts - Saoghe: KRR

QTCr a] SR Ly ADEMRIREN

Y &4 GARGCES, LWL IS GOSN AN E S/ 7 R IR R N B S A R P ¥ s A DEEPTEEERTTYS  CD k. Tat AN SASAT KT LA T al AN kY et T



Depth, inches

| 1.0 .
N r' ¢.0%0 ) /’?V i
E ——— 0.070 //‘,/

N ———— 0.090 7

tl'.' 0.8 === 0.110 //

A~

bt
P
(=
o
7

)t
’
»
R

Fractional dose

100

Time, nsec

. 1
Figure B.1l Time dependence of energy ceposition in titanium, 1
\
‘!
N
'
;:1 © Shot no. 919
)
0.1 Numbera denote individual
¥ ' foils tn the stack
g .

: L !
th < 0.6 ! ! |
: % I

= i | 1 °

- 2 ! i ) !

< ©o2 0.5 i ! ' :
:'. S . - ‘ H ; ; . 11

7. , !
< I T - ' '
- o ! H ! ! )

T H l 1 : ! ! ,

. - i . . ! I ‘ :
3 of : ; ; ! ! ' !
s - | ' : ! ! !

I ! ) : ;
'l 2 i | | ) ! 1 i
g} | . ' ' 1 .
o 0.3 N i L I S
s [ c.0l0 0.020 ¢.030 0.040 0.050 0.054
:: Distance in alpha titanium, inches

-
-

4
e

Figure B,2 Deposition profile for shot no. 5919 ir alpha
titanium.

by

67

TAMY TN S

b

Sy
-



@ shota no. 3027
and 5830

Normalized Dose, ca l/q/:n)/mz
o
w
T

0.4 =
|
{
i ]
v.l
! Sample
i 1
| - .
0.2 ™ . :
1
| .
|
0.1 1 il 1 1 1 )
0 0.920 0.040 0.040 ¢.080 0.100 0.10%

Distance in alpha titanium, inches

Figure B.3 Deposition profile for shots nc. 5827 and 5830
in alpha titanium.

2

‘eallem

e

rmaliee d dase,

N

0.2 1 1 A — I A
0.92¢ 0.040 4,969 c.o® 0.132 3.122 ).125

Distence in sloha titaniu=, tuches

Figure B.4 Deposition profiles for shots no. 5821 and 5825
i alpha titanium.

68




Jl{‘r

e b

5

50 %

trelidect fluence, cal en

O Shot no, 5919

Figure B,5 Peak incident fluence profile for shot no. 5919
in alpha titanium.

200 ® Shot no. 5830, 0.035 inch thick
© Shot no. $925, 0.12% inch thick
\ a Shat no. 5821, 0.12% inch thiek
@Shot no. $E27, 0.035 inch thick
N
3 150l
! <
‘ =
‘ .
1 t
- c
v
=l
' <
-
' < 100}
. 3
‘ &
: 50 s . . ——
) o 0.

1.0 1.% 2.5 2.2%

Oirstance, cm

Figure B.6 Peak incident fluence profile for shots no. 5830,
5925, 5821,

and 5827 in alpha titanium.

tmsk._ e L AT e R T A B e W RS

69

.- 1. « ..
A L&m“r"ﬂ PN LAV A A LS S VSRS RS AL AL SEN

TR TR DA £



APPENDIX C

DEPOSITION PROFILES AND INCIDENT FLUENCES FOR THE
SHOTS NEAREST TO THE SPALL THRESHOLDS [N OFHC COPPER
BAR AND SHEET STOCK INITIALLY AT ROOM TEMPERATURE
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Figure C.5 Deposition profile for shot no. 6285 in copper
bar stock.
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Figure C.7 Depositicn profiles i1(r shots no. 6534 and 6536
in copper sheet stock.
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APPENDIX D

REAR SURFACE SPALL THRESHOLDS OBTAINED BY
PULSED ELECTRON BEAM TECHNIQUES
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Targets of €061-T6 aluminum just thicker than the range of
<l MeV> electrons were irradiated at fluence levels sufficient
to cause rear surface spall without any accompanying front surface
damage. The incident fluence was estimated from calorimeters
surrounding the targets. Standard thin foil aluminum depth-
dosimeters were used to estimate the time-integrated deposition
profiles shown in Ficgure D-1.

The results of the spall tests are summarized in Table D-1.

The typical appearance of a rear surface spall is shown in Figure
D-2.

The above noted experiments were repeated with quartz gauges
bonded to the rear surface of the samples at fluence levels
bracketting the spall thresholds. Due to the absence of front
surface etffects, the time history of the compressive portion of
the thermomechanical stress wave permits a relatively straight
forward material response calculation of the stress history at
the spall plane. In addition, the heated region for <1 MeV>
electrens in aluminum is acoustically thick and therefore the
quartz gauge data can also be used to determine the pressure-
energy coupling coefficient.

These results are summarized in Table D-2. Experimental
quartz gauge records are shown in Figure D-3. The time-depend-
ence of deposition was estimated by matching an averaged experi-
mental profile with a Spencer's data calculation using a typical
accelerator current trace (Figure D=-4). The time dependence is
shown in Figure D-5 and summarized in Table D=-23.
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The measured stresses in quartz agree well with those
predicted by POD, our 1-D Lagrangian code. Figures D-6 and D-7
show examples of measured and predicted stress wave profiles.
Lundergan's data for 6061-T6, a Von Mises yield model, and other
parameters given in Table D-5 were used in the calculations.

The deduced pressure-energy relation is shown in Figure
D~-8. The resulting Gruneisen parameter is [ = 2.0.

Incipient spall, as shown by the photomicrograph in Figure
D-2, occurs at a tensile stress of approximately 13.25 kbar
which is in agreement with the measurements of General Mctors
and Effects Technology, Inc. for comparable tensile pulse

lengths (~ 0.3 usec). The location of the spall is shown in

Figure D-9, superimposed on a calculated (POD) peak tension

envelope for the shot in question.
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Figure D.1 Time integrated (experimental) deposition profile
in 6061-T6 aluminum for <1 MeV> electrons.

Figure D.2 Metallography of rear surface spall for shot no.

12570 in 6061-T6 aluminum (magnified 50X, target
thickness = 0,098 inch).
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sion factor 2.07 V/kbar).
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Figure D.5 Time dependent energy deposition in 6061-T6 aluminum
for <MeV> electrons.
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TABLE o-~1
REAR SURFACE SPALL ODATA FGR 6061-T6 ALUMINUM‘ ]
Sample Peak Average Cegree
Shot Thickness Normalized Dose Incident Fluenc? Average Dnse of :
Number (in.) [igal/a[/lcal/cmz) (cal/cm?) + 10%: (calsg) -+ 10%! opall i
12574 0.100 0.306 K 21.4 No Spall
12552 0.100 0.306 11.7 35.8 No Spall ]
i
i
12553 0,098 0.306 12.5 38.3 No Spall E
12572 | 0.160 0.305 12.2 40.4 No Spall :
i
12549 | 0.10: 0.306 15 45.9 Beginning
Inciplent
12569 0.099 0,306 15.8 48.3 Beginning
Incipient
12551 0,099 0.306 16.4 50.2 Intermediate
Incipient
12570 0.098 0.306 19 58.1 Intermediate
1 Incipient
L\; “<1 vevs electrons, no front surface damage
‘u\.
t\'
M
[
TABLE D-2
PRESSURE-ENERGY COUPLING IN 6061-T6 ALUMINUM, %
<1 MeV> ELECTRONS, QUARTZ2 GAUGE JUST BEYOND ELECTRON RANGE
[ Predicted Estimated Peakgw
! Peak Measured Peak (POD) Peak Predicted {(POL) Pressure 1n
Average (:10%) Abaozbgd Normal Stress | Normal Stress Peak P'ressure Aluminum bFrom
Shot Incicent Fluence Dose in Quartz2 in Quartz in Aluminum Measured Normai
. frum (cal/cm?) (cal/q) (kbar) (kbai ) (kbar} Stress (kbar) i
t;: i 125988 3.5 10.7 1.22 1.22 2.44 2.44 :
? - 112579 L g.9 27.2 2.95 3.01 6.22 6.02
\(c 112589 16.0 49.0 5.08 5.42 11.15 10,48 i
{f: r:gsso 19.90 58.1 6.43 6.43 13.25 13.25 i
P . |
\“ﬁ |12387 20.0 61.2 6.60 6.87 13.90 13.50 i
NS :
; 112}31 22.0C 67.4 7.25 7.%0 15.30 14.80
. [ X3
e r:?f°3 > B85.C - 4.9 4.0 -- 1 -
v:' .
A In the region where no pressure relief occurs during the deposition time
)

*
Elastic Precursor Amplicude
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a1 W s ElL.EUR WILW

e N R LT JUL AR Ry RVE VR e N AN AT Y NV R A AL R L B EEA AR I R A B AVY B FLTuL WE FRITYEW

CUMULATIVE NORMALIZECD
<1 Mel>

IN 6061 -T6 ALUMINUM,
N FoR SHoT 12375

Distance :, €96£1-Tb Alurinum (M:ls; —— -
] f ! T 1
| i° 121 2 3 18 60 22 e |
T
6.47 | 0.1566 | 0.0902 0.0127 0 0 2 ! 0 0 -
v t 1 s ‘ 4
1 Qg i b 4 3 1§;9 n n- = 0. NgRaG ! a A [ 0 i
! 1 12.94 iﬁc 5037 | 9.4863 n.1479 0.2n.% 0.09 | ¢ 1238 ¢ 0 |
; i 19.41 | 0.2408 ! 0.g922 | ©.7008 0.4233 0.1996 | 0.0358% 0 0 i
[— . H
~ : {
T 1 25.89 1 1.2122 l 1.2945 1.0482 0.6500 | 0.2828 | 0.0441 0 3 i
4" H 1 !
1 32.26 00 26298 | 1.7362 1.4939 1.034¢C 0.591 0.2702 ¢.1035 0.2280
= 1 &
¢ | zg.e3 T72.0523 | 2-:811 1.9463 1.4312 c.9183 | ¢0.5247 0.2293 0.0504
045,18 § 2.4268 } 2.5981 2.3241 } .72 01,9799 | 6.5767 0.z300 0.06
l { 51,77 1 2.7344 i 2.9632 1 2.5802 1.8000 | 1.2900 | 9.5700 5,2300 0.96
' : T
[5g.24 | 2.9605 ! 3.1738 l 2.6106 : 1.800 Lo1.c9 0.57 0.23 0.06
1 i X 1.1 H 1 ol n !
P£9.33 1.8 , 3.18 2.61% 1.8 ! 9 0.57 | c.22 09600 |
!
TABLE D-4 i
PARAMETERS USED IN THE CALCULATIONS
Gruneisen Density Shear Modulus Yield Stress
Material Parameter (g/cm3; (Mbar) (Mbar) P = Cu +01 (1l+u)E
6061-T¢ 2.13 2.70 0.1875 0.00171 | C o= 0.794 .
! '
e = JI ) 1
o | Quarsz | 1,17 2.65 0.3765 Ai 0.02 cC = 0.374
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